A method for removing arsenic from drinking water using a flexible modular absorption system. Modules containing adsorption media may be connected through a modular header system in various configurations, for example, lead-lag or parallel. Once the adsorption media is exhausted, the adsorption media may transported to a central facility for regeneration and then returned to the customer for reuse. The customer has no on-site operation, chemicals, secondary waste or sludge to manage. Off-site regeneration can be combined with responsible metals recovery and waste residuals disposal.
Frank S. Craft - Memphis TN Michael D. Kelly - Memphis TN
Assignee:
Mobile Process Technology, Inc. - Memphis TN
International Classification:
B01D 314 B01D 1504 C07C 2974
US Classification:
203 28
Abstract:
The present invention is an improved process for the recovery of ethylene glycol from spent glycol generated in the manufacture of polyethylene terephthalate. The spent glycol typically consists of metal oxide catalyst residues, low molecular weight terephthalate oligomers, diethylene glycol and other trace impurities. The improved process of the present invention is based on the principle that elevating the temperature of the spent glycol increases the solubility of the low molecular weight oligomers so that the low molecular weight oligomers can be dissolved in the ethylene glycol and further that the spent glycol at an elevated temperature may be passed through an ion exchange bed to remove metal oxide catalysts, color forming impurities and other trace impurities.
Frank Craft - Memphis TN, US David Drummonds - Homewood AL, US Shade Mecum - Charlotte NC, US
International Classification:
B01D061/00
US Classification:
210/651000, 210/650000, 210/652000
Abstract:
A method for the treatment of circulating cooling water to remove undesirable chemical, particulate and biological components to minimize fouling, scaling and corrosion. A saturated solution of calcium carbonate is maintained in a cross flow filtration system by controlling the concentration of precipitated salts, temperature and/or pH. The turbulent agitation of the water circulating in the cross flow filtration loop encourages the precipitation of the dissolved calcium carbonate from the saturated solution. The concentration of particulates in the cross flow filtration loop is controlled with respect to the filter membrane flux by balancing the rate of withdrawal of concentrate against the rate of addition of feed water from the circulating cooling water. Additionally, chemicals may be added to the circulating cross flow filtration loop to precipitate other dissolved chemicals. The cross flow filter may be a microfilter or a nanofilter. The permeate from the cross flow filter may be further polished with a nanofilter or reverse osmosis system. The reject from the nanofilter or the reverse osmosis system may be returned to the circulating cross flow filter loop to further enhance the kinetics of the precipitation reaction. Blowdown from the circulating cross flow filter loop (containing a slurry of precipitated chemicals) may be further concentrated with a dewatering device. The water separated from the slurry may then be returned to the circulating cross flow filter loop to enhance the precipitation kinetics.
Resumes
Vice President Applied Technology At Basin Water, Inc