A power generation system and method of operation for generating electricity by utilizing temperature differences inherently present in the ocean between water near the surface and water from the ocean's depths. A pump provides relatively warm, surface ocean water to a flash evaporator where a portion of the water is flashed into steam. The steam is expanded through a subatmospheric pressure range turbine which exhausts into a condensing enclosure. The steam exhausting into the enclosure is condensed by relatively cold ocean water pumped thereinto. The turbine drives a generator and thus produces the electricity. The turbine speed and generator output are controlled by selectively introducing atmospheric air and relatively warm water into the exhausted motive steam flow. Such selective introduction into the exhausted steam flow of air and/or relatively warm water increases the absolute pressure at the turbine's exhaust end and thus reduces steam flow through the turbine. Adjusting regulating valves for the air and warm water flows in response to changes in turbine speed and/or generator load provides means for regulating the speed of the turbine and generating load.
Bernard L. LaCoste - Wilmington DE Thomas H. McCloskey - Media PA
Assignee:
Westinghouse Electric Corporation - Pittsburgh PA
International Classification:
F16K 3144
US Classification:
251214
Abstract:
A shaft seal device for a butterfly valve shaft wherein a friction face seal device having a flexible double bellows arrangement thereon is disposed within a seal chamber between a contaminated source of pressurized steam and a low pressure gland condenser. A buffer layer of uncontaminated steam having a pressure higher than the pressure of the contaminated steam is introduced into the seal chamber through conduit means. The buffer layer of uncontaminated steam having a pressure higher than the pressure of the contaminated steam is disposed between the contaminated steam source and the gland condenser to insure zero leakage of contaminated steam past the double bellows seal device into the gland condenser.
Bernard L. LaCoste - Wilmington DE Lloyd W. Smith - Nether Providence, Delaware County PA Thomas J. Finnimore - East Nottingham Township, Chester County PA
Assignee:
Westinghouse Electric Corp. - Pittsburgh PA
International Classification:
F16K 2500
US Classification:
251 86
Abstract:
A valve apparatus for controlling fluid flow therethrough. A valve support body attached to an elongated stem is housed in an internal opening of a valve body which is externally mateable with a valve seat. Mateable surfaces on the valve body and valve seat are spherical so as to ensure complete engagement therebetween for misalignments between the stem-supported valve body and the valve seat. An antivibration or stabilizing ring situated between the support body and the valve body within the internal opening permits rotation of the valve body about the support body during valve closure to compensate for large stem-valve seat misalignments while restricting relative oscillatory, vibrating motion between the support body and valve body when the valve is in the open, unengaged configuration. Maximum vibration resistance and free rotatability of the valve body is obtained by disposing the stabilizing ring to occupy a position in the plane formed by the contact line between the valve body and seat. A portion of the support body is spherical in shape so as to promote its mateability with a spherical surface which partially bounds the internal valve body opening.
Suryakant K. Dawawala - Casselberry FL Bernard L. LaCoste - Wilmington DE
Assignee:
Westinghouse Electric Corp. - Pittsburgh PA
International Classification:
F16K 132
US Classification:
251282
Abstract:
A control valve for cyclic duty steam turbines having a one piece bonnet configuration which has been designed to minimize the affects of and withstand expected cyclic stresses during hot, warm and cold startup conditions of turbines utilized for peak loading.
Ocean Thermal Energy Conversion System And Method For Operation
A power generation system and method of operation for generating electricity by utilizing temperature differences inherently present in the ocean between water near the surface and water from the ocean's depths. A pump provides relatively warm, surface ocean water to a flash evaporator where a portion of the water is flashed into steam. The steam is expanded through a subatmospheric pressure range turbine which exhausts into a condensing enclosure. The steam exhausting into the enclosure is condensed by relatively cold ocean water pumped thereinto. The turbine drives a generator and thus produces the electricity. The turbine speed and generator output are controlled by selectively introducing atmospheric air and relatively warm water into the exhausted motive steam flow. Such selective introduction into the exhausted steam flow of air and/or relatively warm water increases the absolute pressure at the turbine's exhaust end and thus reduces steam flow through the turbine. Adjusting regulating valves for the air and warm water flows in response to changes in turbine speed and/or generator load provides means for regulating the speed of the turbine and generating load.