An apparatus and method for electro-optically controlling the path of a laser beam or other electromagnetic beam in a suitable spectrum (e. g. visible, infrared, etc. ) operates entirely in a solid state. Crystalline carbon-60 is manufactured in a gaseous environment to produce carbon-60 balls, each capturing a polarized molecule or ion susceptible to application of an electric field. Carbon-60 balls are suspended in a matrix of transparent gel, cured polymer, or held by their own solid, crystalline structure. Electrodes for controlling electric fields imposed upon the head, preferably shaped as a semi-spherical object, may be energized by alternating voltage to provide an alternating field. The ions or polarized molecules may oscillate within the carbon-60 "cages" in any direction as dictated by multiple, phased, field electrodes. A virtual plane of ions creates a refractive environment that can selectively aim an incoming beam in accordance with oscillating patterns of ions under the influence of the electrical fields.
An apparatus and method for electro-optically controlling the path of a laser beam or other electromagnetic beam in a suitable spectrum (e. g. visible, infrared, etc. ) operates entirely in a solid state. Crystalline carbon-60 is manufactured in a gaseous environment to produce carbon-60 balls, each capturing a polarized molecule or ion susceptible to application of an electric field. Carbon-60 balls are suspended in a matrix of transparent gel, cured polymer, or held by their own solid, crystalline structure. Electrodes for controlling electric fields imposed upon the head, preferably shaped as a semi-spherical object, may be energized by alternating voltage to provide an alternating field. The ions or polarized molecules may oscillate within the carbon-60 "cages" in any direction as dictated by multiple, phased, field electrodes. A virtual plane of ions creates a refractive environment that can selectively aim an incoming beam in accordance with oscillating patterns of ions under the influence of the electrical fields.
Anthony Dashnaw (1997-2001), Ryan LeClair (1996-2000), Heather Despres (1999-2003), Harold Glaser (1973-1978), Paul Welker (1996-1998), Charles Tinney (1993-2001)