A noise measurement test system is provided for making phase noise measurements of a unit under test (UUT). The noise measurement test system comprises a variable amplifier, a variable low noise source, a variable phase shifter, a mixer, a variable low noise matching amplifier, analog-to-digital converter, a processor and a spectrum analyzer. A first low noise signal, created by the low noise source, is routed through the unit under test and variable amplifier to the mixer. A second low noise signal, also created by the low noise source, is routed through the variable phase shifter to the mixer. The mixer places the received signals in phase quadrature and outputs a measurement test signal which is routed through an analog-to-digital convertor to the processor and spectrum analyzer. The processor includes control links for adjusting the amplifier, low noise source and phase shifter to ensure that the signals received by the mixer are in phase quadrature. The processor also controls the low noise matching amplifier to ensure that there is proper impendence between the mixer and analog-to-digital convertor, and to ensure that the measurement test signal is of sufficient amplification for proper noise testing.
Data Transmission By An Alternating-Frequency Analog Signal
The present invention provides for the compression of digital and analog data for storage and transmission. Analog data in the form of an analog signal is converted into a digital signal by an analog-to-digital converter. The digital signal is then converted into an analog signal having an alternating frequency by a first converter processor and an alternating frequency generator according to a predetermined conversion table. To reproduce the original analog signal, the analog signal having an alternating frequency is first converted back into a digital signal by an alternating frequency measurement means connected to a second converter processor, also in accordance with the predetermined conversion table. The digital signal is then converted to the original analog signal by a digital-to-analog converter.
A cancellation circuit is provided for canceling undesirable intermodulation (IM) products in electrical circuitry. The IM cancellation circuit includes a stepping spectrum analyzer which recognizes and measures the frequencies and amplitudes of different signal components of an RF signal across a desired frequency band. This information is forwarded to a processor which contains look-up tables or the like which provides information relating to the frequencies and/or amplitudes of signal components which are intended to reside in the RF signal. By comparison of the look-up tables to the frequencies and amplitudes measured and recognized by the sweeping spectrum analyzer, the processor of the cancellation circuit is able to determine whether the signal components in the RF signal are intended âinformationâ carrying signals or unintended IM products. Where the processor has determined that a signal component is an unintended IM product, the processor controls a variable voltage controlled oscillator and variable amplifier to create a cancellation signal having an identical frequency and amplitude as the frequency and amplitude of the IM product. A phase shifter is provided to shift the phase of the cancellation signal 180 degrees with respect to the IM product and the cancellation signal is combined with the RF signal to produce an output signal having the IM product canceled.
Data Transmission By An Alternating Frequency Analog Signal
The present invention provides for the compression of digital and analog data for storage and transmission. Analog data in the form of an analog signal is converted into a digital signal by an analog-to-digital converter. The digital signal is then converted into an analog signal having an alternating frequency by a first converter processor and an alternating frequency generator according to a predetermined conversion table. To reproduce the original analog signal, the analog signal having an alternating frequency is first converted back into a digital signal by an alternating frequency measurement means connected to a second converter processor, also in accordance with the predetermined conversion table. The digital signal is then converted to the original analog signal by a digital-to-analog converter.
Eugene Rzyski - Irvine CA 92620 Todd Wangsness - Irvine CA 92606
International Classification:
H04B 126
US Classification:
455323, 455316, 455130, 455141
Abstract:
A direct downconversion receiver combines a received RF signal and a local oscillator (LO) signal to form a combined signal. The local oscillator signal is also phase-shifted by approximately 90 degrees to form a quadrature signal. A mixer forms the product of the combined signal and the quadrature signal to produce a baseband output signal.
Eugene Rzyski - Irvine CA, US Todd Wangsness - Murrieta CA, US
Assignee:
OmniPhase Research Laboratories, Inc. - Newport Beach CA
International Classification:
G01R 35/00
US Classification:
702111, 700 44
Abstract:
In one embodiment, a low-noise source includes: a signal source; a variable amplifier adapted to amplify an output signal from the signal source to provide an amplified signal; a feed-forward amplifier adapted to amplify the amplified signal to provide an amplified output signal; a phase noise measurement system adapted to provide a first feedback signal responsive to phase noise in the amplified output signal; and a processor adapted to control the amplification provided by the variable amplifier responsive to the feedback signal so as to minimize phase noise in the amplified output signal.
In one embodiment, a frequency agile receiver is provided that includes an antenna: a first diode having its anode coupled to ground through a first conductor; a second diode having its anode coupled to the cathode of the first diode through a second conductor, the antenna coupling to the second conductor, the second diode having its cathode coupled to an output node through a third conductor, wherein at least one of the first, second, and third conductors comprises a shape memory alloy conductor; and a tuning circuit adapted to drive a bias current into the shape memory alloy conductor.
Todd Wangsness - Irvine CA, US Eugene Rzyski - Fallbrook CA, US
Assignee:
OmniPhase Research Laboratories, Inc. - Newport Beach CA
International Classification:
H04B 1/30 G06F 19/00
US Classification:
455324, 455258
Abstract:
A noise test measurement system configured to measure a noise component of a transmitted RF signal is described. The noise test measurement system may include an antenna, a low-noise amplifier, a local oscillator, a first coupler, a first variable phase-shifter, a first mixer, and a processor.