Shea L. Petricek - Austin TX James Carroll Wadlington - Austin TX
Assignee:
Tyco Electronics Logistics AG - Steinach
International Classification:
G05F 140
US Classification:
323272, 323224, 323351
Abstract:
A board mountable power supply module is described. The power supply module includes a power train for converting an input voltage into a regulated output voltage and a controller operable to control the power train. The power train is connected to the input and output voltages through an input voltage pin, an output voltage pin and a common pin. The controller includes a multifunction control pin, which allows for disabling the power supply module and for trimming the output voltage. Additionally, two or more power supply modules can be connected in parallel to form a power supply that is capable of meeting increased load current requirements. Each of the multifunction control pins in the power supply is electrically connected together to improve current sharing between modules by reducing internal variances between modules.
Michael M. Walters - Apex NC, US Shea L. Petricek - Round Rock TX, US
Assignee:
Intersil Americas Inc. - Milpitas CA
International Classification:
G05F 1/59
US Classification:
323272, 363 65
Abstract:
A multiphase DC-DC converter architecture, in which respectively different channels have different operational performance parameters. These different parameters are selected so as to enable the converter to achieve an extended range of high efficiency. The converter contains a combination of one or more fast response time-based converter channels, and one or more highly efficient converter channels in respectively different phases thereof and combines the outputs of all the channels. The efficiency of the asymmetric multiphase converter is higher at light loads (up to approximately 12 amps), enabling it to offer longer battery life in applications that spend most of their operating time in the leakage mode, as noted above.
Method Of Controlling Parallel Diverse Conversion Paths In Dc-To-Dc Power Converter
A DC-DC converter has a plurality of diverse type DC-DC converter channels whose outputs are combined to provide a composite DC power output to a load. One of the channels is a high efficiency power path that supplies the average current demand of the load. A second channel comprises a fast transient response power path which handles transient response demands.
Buck Boost Function Based On A Capacitor Bootstrap Input Buck Converter
A buck boost voltage converter circuit has a capacitor pump circuit for boosting an input voltage in a first mode of operation when an input voltage is below a desired voltage level. A buck converter circuit provides the output voltage responsive to the boosted input voltage from the capacitor pump circuit in the first mode of operation and provides the output voltage responsive to the input voltage in a second mode of operation when the input voltage is above the desired voltage level.
A buck-boost regulator for converting an input voltage to an output voltage which includes an inductor, an error circuit providing an error voltage, buck and boost switching circuits, buck and boost ripple circuits, and buck and boost hysteretic comparator circuits. The buck switching circuit switches a first end of the inductor, the buck ripple circuit replicates ripple current through the inductor based on the buck pulse signal and provides a buck ripple voltage, and the buck hysteretic comparator circuit develops the buck pulse signal based on a buck window voltage range using the error voltage. The boost switching circuit switches a second end of the inductor, the boost ripple circuit replicates ripple current through the inductor based on the boost pulse signal and provides a boost ripple voltage, and the boost hysteretic comparator circuit develops the boost pulse signal based on a boost window voltage range using the error voltage.
A boost regulator for converting an input voltage to a higher output voltage including an inductor, an error circuit, a switching circuit, a ripple circuit, and a hysteretic comparator circuit. The inductor has a first end coupled to the input voltage and a second end. The error circuit determines an error of the output voltage and provides an error voltage indicative thereof. The switching circuit switches the second end of the inductor between the output voltage and ground as controlled by a pulse width modulation signal. The ripple circuit synthetically replicates ripple current through the inductor based on voltage applied across the inductor and provides a ripple voltage indicative thereof. The hysteretic comparator circuit develops the pulse width modulation signal based on comparing the ripple voltage within a hysteretic window voltage range based on the error voltage.
An embodiment of a controller for a power supply includes circuitry that is operable to allow the power supply to operate as follows. During a first portion of a supply period, a first current flows through a first winding of the power supply, through a second winding of the power supply, and to an output node of the power supply. And during a second portion of the supply period, a second current flows through the first winding, through a third winding of the power supply, and to the output node. Each of the first, second, and third windings may be non-electrically isolated from one or more of the other windings during one or more portions of the supply period. Furthermore, the first, second, and third windings may be magnetically coupled to one another. For example, in an embodiment, such a controller may be part of a DC-DC converter that may be more efficient, and that may have reduced interdependence between output-signal ripple and transient response, than a conventional buck converter.
Multi-Phase Non-Inverting Buck Boost Voltage Converter
XUELIN WU - PLANO TX, US CONGZHONG HUANG - PLANO TX, US SHEA PETRICEK - DALLAS TX, US
Assignee:
INTERSIL AMERICAS INC. - MILPITAS CA
International Classification:
G05F 1/618
US Classification:
323272
Abstract:
A multi-phase non-inverting buck boost voltage converter has a plurality of buck boost voltage regulators. Each regulator is associated with a separate phase for generating a regulated output voltage responsive to an input voltage. A plurality of current sensors are each associated with one of the plurality of buck boost voltage regulators for monitoring an input current to the associated buck boost voltage regulator and generating a current sense signal for the associated phase. A plurality of buck boost mode control circuitries are each associated with one of the buck boost regulator for controlling an associated buck boost voltage regulator using peak current mode control in a buck mode of operation and valley current mode control in boost mode of operation responsive to a common error voltage and the associated current sense signal. The plurality of buck boost mode control circuitries provides current balancing between the phases. A voltage error circuit generates the error voltage responsive to the regulated output voltage